Differences in the aromatic domain of homologous streptococcal fibronectin-binding proteins trigger different cell invasion mechanisms and survival rates.

نویسندگان

  • Manfred Rohde
  • Rikki M Graham
  • Katja Branitzki-Heinemann
  • Patricia Borchers
  • Claudia Preuss
  • Ina Schleicher
  • Dorothea Zähner
  • Susanne R Talay
  • Marcus Fulde
  • Katrin Dinkla
  • Gursharan S Chhatwal
چکیده

Group A streptococci (GAS, Streptococcus pyogenes) and Group G streptococci (GGS, Streptococcus dysgalactiae ssp. equisimilis) adhere to and invade host cells by binding to fibronectin. The fibronectin-binding protein SfbI from GAS acts as an invasin by using a caveolae-mediated mechanism. In the present study we have identified a fibronectin-binding protein, GfbA, from GGS, which functions as an adhesin and invasin. Although there is a high degree of similarity in the C-terminal sequence of SfbI and GfbA, the invasion mechanisms are different. Unlike caveolae-mediated invasion by SfbI-expressing GAS, the GfbA-expressing GGS isolate trigger cytoskeleton rearrangements. Heterologous expression of GfbA on the surface of a commensal Streptococcus gordonii and purified recombinant protein also triggered actin rearrangements. Expression of a truncated GfbA (lacking the aromatic domain) and chimeric GfbA/SfbI protein (replacing the aromatic domain of SfbI with the GfbA aromatic domain) on S. gordonii or recombinant proteins alone showed that the aromatic domain of GfbA is responsible for different invasion mechanisms. This is the first evidence for a biological function of the aromatic domain of fibronectin-binding proteins. Furthermore, we show that streptococci invading via cytoskeleton rearrangements and intracellular trafficking along the classical endocytic pathway are less persistence than streptococci entering via caveolae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of sfbI encoding streptococcal fibronectin-binding protein I: horizontal genetic transfer and gene mosaic structure.

Streptococcal fibronectin-binding protein is an important virulence factor involved in colonization and invasion of epithelial cells and tissues by Streptococcus pyogenes. In order to investigate the mechanisms involved in the evolution of sfbI, the sfbI genes from 54 strains were sequenced. Thirty-four distinct alleles were identified. Three principal mechanisms appear to have been involved in...

متن کامل

Biochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin

Objective(s): The periodic binding of protein expressed by Mycobacterium tuberculosis H37Rv with the host cell receptor molecules i.e. fibronectin (Fn) is gaining significance because of its adhesive properties.  The genome sequencing of M. tuberculosis H37Rv revealed that the proline-glutamic (PE) proteins contain polymorphic GC-rich repetitive sequences (PGRS) which have clinical importance i...

متن کامل

اهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری

Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...

متن کامل

Prediction of T-cell epitopes for designing a reverse vaccine against streptococcal bacteria

Streptococcal bacteria are among dangerous human pathogens with major prevalence worldwide. A good vaccine against streptococcal bacteria should have epitopes that confer protection from infection by different streptococcal bacteria types. we aimed was to recognize the most immunogenic and conserved epitopes of streptococcal bacteria, which could be a potential candidate for vaccine development...

متن کامل

The contribution of serum opacity factor to group A streptococcal epithelial cell invasion

Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40–50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. SOF is co-transcribed in a twogene operon with another fibronectin-binding protein, SfbX. We compared the ability of an SOF(+) wild-type (WT) se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular microbiology

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2011